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Abstract—A network-on-chip (NoC) based parallel processor is
presented for bio-inspired real-time object recognition with visual
attention algorithm. It contains an ARM10-compatible 32-bit main
processor, 8 single-instruction multiple-data (SIMD) clusters with
8 processing elements in each cluster, a cellular neural network
based visual attention engine (VAE), a matching accelerator, and a
DMA-like external interface. The VAE with 2-D shift register array
finds salient objects on the entire image rapidly. Then, the parallel
processor performs further detailed image processing within only
the pre-selected attention regions. The low-latency NoC employs
dual channel, adaptive switching and packet-based power man-
agement, providing 76.8 GB/s aggregated bandwidth. The 36 mm�

chip contains 1.9 M gates and 226 kB SRAM in a 0.13 m 8-metal
CMOS technology. The fabricated chip achieves a peak perfor-
mance of 125 GOPS and 22 frames/sec object recognition while
dissipating 583 mW at 1.2 V.

Index Terms—Matching accelerator, network-on-chip (NoC),
object recognition, parallel processor, processing element clusters,
visual attention engine.

I. INTRODUCTION

R ECENTLY, intelligent vision processing such as ob-
ject recognition and video analysis has been emerging

research area for intelligent mobile robot vision system,
autonomous vehicle control, video surveillance and natural
human-machine interfaces [1]�[4]. Such vision applications
require huge computational power and real-time response under
the low power constraint, especially for mobile devices [1], [2].
Programmability is also needed to cope with a wide variety of
applications and recognition targets [2].

Object recognition involves complex image processing tasks
which can be classi�ed into several stages of processing with
different computational characteristics. In low-level processing
(e.g. image �ltering, feature extraction), simple arithmetic
operations are performed on a 2-D image array of pixels. On
the contrary, high-level processing is irregular and performed
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on objects that are de�ned by groups of features extracted at
the lower level. Since object recognition requires huge com-
putation power on each stage, general-purpose architectures
such as microprocessor and digital signal processor cannot
achieve a real-time processing due to its sequential pipelining
feature. Many vision processors previously reported were
based on massively parallel SIMD architecture with a number
of processing elements (PEs) for data-level parallelism [1]�[3].
However, these processors focus only on the low-level image
processing operations like image �ltering, and they are not suit-
able for object-level parallelism, which is essential for higher
level vision applications such as object recognition. A mul-
tiple-instruction multiple-data (MIMD) multi-processor was
presented with Network-on-Chip (NoC) to exploit task-level
parallelism [4]. However, it cannot achieve a real-time pro-
cessing due to its limited computing power and complex data
synchronization requirement.

In this work, to overcome the computational complexity of
the object recognition, visual attention based object recognition
algorithm is applied to design the pattern recognition processor
[5]. The processor of this study combines 3 features, the parallel
processor, visual attention engine (VAE) and the NoC platform,
and improves object recognition performance: 58% reduction in
power and 38% improvement in recognition speed over the pre-
vious design [4]. Its SIMD/MIMD dual-mode parallel processor
contains 8 SIMD linear array PE clusters which have 8 PEs each,
achieving the peak performance of 96 GOPS. The VAE is com-
posed of an 80 x 60 digital cellular neural network (CNN) and
selects salient object regions out of the image rapidly. The NoC
supports 76.8 GB/s aggregated bandwidth with 2-clock cycle
latency as a communication platform. The chip is fabricated in
0.13 um CMOS technology and shows 125 GOPS peak perfor-
mance at the recognition speed of 22 frames/sec with less than
583 mW.

This paper is organized as follows. In Section II, the atten-
tion-based object recognition is brie�y introduced. The system
architecture with dual-mode con�guration will be described
in Section III. Key building blocks such as the VAE, SIMD
PE Clusters, low-latency NoC, and matching accelerator will
be explained in Section IV�VII. Packet-based power manage-
ment employed in this chip is described in Section VIII. Im-
plementation results and performance evaluations are given
in Section IX. The conclusion of this work will be made in
Section X.
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Fig. 1. Attention-based object recognition system.

II. ATTENTION-BASED OBJECT RECOGNITION

A. Algorithm Overview

The proposed attention-based object recognition algorithm
consists of three steps (Fig. 1): visual attention, key-points ex-
traction and matching. In contrast to the conventional object
recognition algorithm such as Scale Invariant Feature Transform
(SIFT) [6], visual attention is performed in advance. Visual at-
tention is the ability of the human visual system to rapidly select
the most salient part of an image. It is an essential role of vi-
sual cortex in the human brain [7]. Then, key-points extraction
and feature descriptor generation are performed on the pre-se-
lected salient image regions by the visual attention mechanism.
Finally, we can recognize the object by matching individual fea-
tures to a database of features using a nearest neighbor search
algorithm [8].

By incorporating the visual attention into the conventional
object recognition algorithm, next visual processing such
as key-point extraction and matching can focus on only the
pre-selected image to reduce the computation cost of the object
recognition. The visual attention can con�ne other image pro-
cessing tasks within the extent of the interested image regions.
Therefore, the amount of the image data to be processed on
higher-level visual processing stages can be reduced and the
computation cost can go down. The number of key-points
extracted in the image is reduced and the key-points only in
the attended image region need to be matched to the object
database, making it faster and easier to recognize the object.
As a result, the VAE leads to a considerable speed-up to make
real-time object recognition possible. Moreover, numerous
computer vision applications such as object tracking and image
segmentation can bene�t from the VAE as well.

B. Cellular Neural Network for VAE

Saliency-based model of visual attention has been widely
used in various computer vision applications [9], [10]. Ac-
cording to the [9], visual attention can be modeled by the

four steps: multi-scale image generation, low-level feature
extraction, conspicuity map, and saliency map generation. Such
a saliency-based visual attention process involves a series of
2-D image �ltering operations such as difference-of-Gaussians
�lter and Gabor �lter, which can be easily implemented by an
algorithm with CNN architecture [11]. The CNN is a 2-D array
of locally connected cells and the connection weights among
neighboring cells as a template de�ne the CNN operation [12].
Because 2-D structure of the CNN can be directly mapped onto
an image, its inherent cell-level parallel processing can give
high performance. In addition, uniform local connections make
it suitable for VLSI implementation. Therefore, the VAE of this
study is implemented using the CNN.

III. SYSTEM ARCHITECTURE

A. System Operation

Fig. 2 shows the overall architecture of the proposed NoC-
based parallel processor. It consists of 12 IPs: a main processor,
VAE, a matching accelerator, 8 PE Clusters (PECs) and an ex-
ternal interface. The ARM10-compatible 32-bit main processor
controls the overall system operations. The VAE, an 80 x 60
digital cellular neural network, rapidly detects the salient image
regions on the sub-sampled image (80 x 60 pixels) by contour
and saliency map extraction. Although the low-resolution image
is mapped on the VAE, it does not cause any loss of recognition
accuracy because the role of the VAE is just to make a rough
selection of the salient image regions before the detailed pro-
cessing. The 8 linearly connected PECs perform data-intensive
image processing applications such as image gradients and his-
togram calculations for more detail analysis of the salient image
parts (i.e., the objects) selected by the VAE. The matching ac-
celerator boosts the nearest neighbor search to obtain the �nal
recognition result in real-time. The DMA-like external interface
distributes automatically the corresponding image data to each
PEC to reduce system overhead. Initially, 2-D image plane is
equally divided into 8 PECs according to the image size speci-
�ed by the main processor. Each core is connected to the NoC
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Fig. 2. System architecture.

Fig. 3. Dual-mode con�guration: (a) SIMD mode and (b) MIMD mode.

via a network interface (NI). The on-chip PLL generates two in-
dependent clocks for the IPs and the NoC, and the clocks can be
controlled by the host processor.

B. Dual-Mode Configuration

The attention-based computer vision applications such
as object recognition and tracking require a wide range of
parallelism: data-level parallelism for the processing of the
entire image in the pre-attentive phase, and object-level par-
allelism for only salient image regions selected by the VAE
in the post-attentive phase. To incorporate the above require-
ments into a single system, the proposed parallel processor
has dual-mode con�guration. That is, by modifying its NoC
con�guration, the system can choose one mode between SIMD
and MIMD mode as shown in Fig. 3. In a circuit switching
NoC, the main processor broadcasts instruction and data to all
PE arrays. In this mode, the system exploits massively parallel
SIMD operation for image pre-processing, and in this case its
peak performance is 96 GOPS at 200 MHz. On the contrary,
in a packet switching NoC or in the MIMD mode, the 8 PECs
operate independently in parallel for object-parallel processing.
In this case, each PEC is responsible for the objects, each of
which contains image data around the extracted key-points.

It takes about a few tens of cycles to change the NoC con�g-
uration and the exact cycles depend on the network traf�c status
due to circuit establishment and release time overhead for the

Fig. 4. Block diagram of the VAE.

circuit switching NoC. For object recognition application, how-
ever, the operation mode conversion occurs only twice when the
recognition of 1-frame image is performed: SIMD to MIMD
conversion after the pre-processing stage including the VAE op-
eration and MIMD to SIMD conversion after completing the
recognition. Therefore, such a dual-mode architecture is suit-
able for compact object recognition system with negligible im-
pact on the overall system performance.

IV. VISUAL ATTENTION ENGINE

A. Cellular Neural Network Based Architecture
The CNN is usually implemented using analog cells because

biological neuron operates in a continuous time domain [13].
However, the analog CNN requires high accuracy analog cir-
cuits to deal with complex algorithms like visual attention and
it is not suitable to be integrated into SoC. To overcome the
limitation of the analog CNN, a digital CNN, a discrete-time
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Fig. 5. VAE cell schematic.

version of CNN, has been studied [14]. The digital CNN can
be more easily integrated into the parallel processor without
analog-to-digital (A/D) or digital-to-analog (D/A) conversion
overhead.

The VAE is an 80 x 60 digital CNN optimized for small area
and energy ef�ciency. Fig. 4 shows the block diagram of the
VAE, which is composed of 4 arrays of 20 x 60 cells, 120 vi-
sual PEs (VPEs) shared by the cell arrays, and a controller with
2 kB instruction memory. Previous implementations of digital
CNN [14] can integrate only a small number of cells due to the
large size of digital arithmetic blocks. On the contrary, the VAE
integrates 80 x 60 cells that each correspond to a pixel in an 80
x 60 resolution image. This is possible because the cells of the
VAE only perform storage and inter-cell data transfer to min-
imize area while a smaller number of the shared VPEs are re-
sponsible for processing the cells data. An 80 x 60 shift reg-
ister array, distributed among the cells, eliminates data commu-
nication overhead in convolution operations of arbitrary kernel
size and shape, which is the most frequently used operation
in the CNN. The VAE controller generates the control signals
for sequencing the operation of the cells and the VPEs. Such
a CNN-based architecture can accelerate visual attention algo-
rithms like contour and saliency map extraction.

B. VAE Cell

Fig. 5 shows the schematic diagram of the VAE cell. It con-
sists of two elements: a 8-bit 4-entry register �le and a 4-direc-
tional shift register. Four 6T SRAM cell based registers store
intermediate and result data of the CNN operation. The shift
register�s data is initially loaded from the register �le and then
shifted to neighboring cells. A shift operation on the entire cell
array requires only 1 cycle to complete. Because all cells shift in
the same direction, one bidirectional channel is used for 2-way
communication between neighboring cells to save routing chan-
nels. A dynamic logic based on MUX/DEMUX with NMOS
pass-transistor only circuit is utilized to reduce the area of the

4-directional shift register. In this circuit, the voltage value at
dynamic node D is precharged to and then is evaluated
through one of �ve possible paths selected by the control signals
�N_En�, �E_En�, �S_En�, �W_En�, and �load_En� before being
captured by the pulsed latch. As a result, the full-custom de-
signed cell occupies a compact area of 502 , achieving the
cell area reduction of 40% compared with a static MUX-based
design.

C. VAE Operation

Fig. 6(a) shows the basic VAE operation. Each VPE located in
the middle is shared by a group of 40 cells connected via 2 read
buses and 1 write bus. The VPEs, operating in SIMD mode, are
capable of 1 cycle MAC operation and employ 3 stage pipelines
that consist of read, execute, and write. The cell data stored in
the shift register and the register �le can be read through 2 read
buses. Execution results of the VPEs are written back to the reg-
ister �le of the cell through a write bus. The single-ended read
bus is pre-charged to and the complementary write bus
driven by the output of the VPE has full swing signal to ensure
reliable write operation. To facilitate 1 op/cycle throughput, read
and write of cell data is sequentially executed within one cycle
using a self-timed circuit. It takes 42 cycles for the VPEs to ex-
ecute one instruction on the entire cell array. The resulting peak
performance of the 120 VPEs is 24 GOPS at 200 MHz. Fig. 6(b)
shows the measured waveforms of cell control signals when the
VAE operates at 200 MHz. Word line, read enable, and write
enable signals are sequentially asserted for cell read and write
operation within a single cycle. Thanks to the VAE pipelined
operation, 1-cycle throughput and the peak performance of 24
GMACS are achieved.

The most time consuming operation of the digital CNN is to
calculate the weighted sum of neighborhood cell values. Fig. 7
visualizes the method to obtain the weighted sum. It involves a
spiraling shift sequence that can be straightforwardly extended
to neighborhoods larger than the 3 x 3 neighborhood of Fig. 7.
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Fig. 6. (a) VAE operation and (b) measured waveforms of cell control signals.

The procedure shown in Fig. 7 takes 387 cycles (42 cycles per
MAC operation and 1 cycle per shift operation) to complete the
weighted sum operation on the VAE. Thanks to the ef�cient shift
pattern and a single cycle shift operation, data communication
overhead is only 2.4% and 93% utilization of the VPE array can
be achieved. For a complete iteration of a 3 x 3 CNN template,
858 cycles or 4.3 s is required. As a result, the VAE takes only
2.4 ms to complete a saliency map extraction, which is about two
orders of magnitude improvement over that by an Intel Core 2
processor.

V. SIMD PE CLUSTER

The PEC is a SIMD processor array designed to accelerate
image processing tasks. Fig. 8 shows the architecture of the
PEC. It contains 8 linearly-connected PEs controlled by a cluster
controller, a cluster processing unit (CLPU), 20 kB local shared
memory (LSM), a LSM controller, and a PE load/store unit.
The 8 PEs operate in a SIMD fashion and process image opera-
tions in a column-parallel (or row-parallel) manner. The CLPU,
which consists of an accumulator and an 8-input comparator,
generates a single scalar result from the parallel output pro-
cessed by the PE array. The LSM is used as on-chip frame
memory or local memory for each PEC to store the input or
processed image data and objects. A single-port 128-bit wide
SRAM is used for the LSM to avoid area overhead. The LSM

provides a single-cycle access and is shared among the PE load/
store unit, the LSM controller and the CLPU. Arbitration for
the LSM is performed on a cycle-by-cycle basis to improve
the LSM utilization. The LSM controller is responsible for data
transfer between external memory or other PECs and the LSM
while the PE load/store unit can access the LSM only for local
data transfer. The LSM controller, which is an independent pro-
cessing unit optimized for data transfer like the DMA engine,
enables the data transfers in parallel with PE execution to hide
excessive external memory latency.

Fig. 9 shows the 5-stage pipeline architecture of the PEC. The
cluster controller, the 3-stage pipelined PE array, and the CLPU
are tightly coupled together to maintain 1-cycle throughput
for all operations. Especially, the tightly coupled PE array
and CLPU architecture achieves single-cycle execution for
statistical image processing tasks (e.g. histogram calculations)
where an input image is transformed into a scalar or vector
data, while the massively parallel SIMD processors [1], [2]
require sequential operations on a line-by-line basis to obtain
the same result due to the absence of the CLPU-like processing
unit. Such an architecture is suitable for object recognition
because histogram calculations is the essential operation for
key-point descriptor generation in the object recognition task
[6]. In addition, due to the simple control circuit in the SIMD
architecture, the cluster controller including 2 KB instruction
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